Rabu, 24 Februari 2010

SEBUAH ARTI CINTA



Orang boleh memiliki berjuta persepsi tentang cinta atau arti cinta, tapi lebih penting memahami bahwa cinta adalah esensi kehidupan umat manusia...

"Karena cinta Tuhan menciptakan kita"
"Melalui cinta semua kehidupan tertata"

Cinta adalah ketika...!

ketika engkau tertawa oleh hal yg tidak lucu karenanya..

Ketika engkau sangat bahagia dengan hal kecil yg sangat sepele karenanya..

ketika ia dapat membuat air matamu jatuh dengan sendirinya..

Ketika engkau menerima dia seperti adanya dirinya..

Ketika kamu memaafkan sebelum dia memintanya..

Ketika kamu mencintai tanpa mengharapkan balasannya..

Ketika kamu menunggunya meski dia tidak tahu..

Ketika kamu mengharapkannya meski dia tidak menginginkanmu..

Ketika kamu memberi apa yg tidak kamu miliki..

Ketika kamu menerima apa yg tidak km sukai darinya..

Ketika tiap detik pikiranmu slalu kepadanya..

Ketika engkau hatimu tlah tertutup untuk orang lain..

Ketika hatimu berikrar untuk bersama dia selamanya..

Ketika engkau tetap mencintainya tak kenal waktu..

Ketika engkau menangis melebihi tangisannya..

Ketika engkau bahagia bila dia telah bahagia..

Ketika engkau mencintai hingga detik terakhir hidupmu..

Dengan atau tanpanya..
Sampai hari terakhirmu..

Rabu, 17 Februari 2010

teori graf

Pendahuluan

Di matematika dan ilmu komputer, teori graf adalah cabang ilmu yang mempelajari sifat-sifat graf. Secara informal, suatu graf adalah himpunan benda-benda yang disebut verteks (atau node) yang terhubung oleh edge-edge (atau arc). Biasanya graf digambarkan sebagai kumpulan titik-titik (melambangkan verteks) yang dihubungkan oleh garis-garis (melambangkan edge).

Banyak sekali struktur yang bisa direpresentasikan dengan graf, dan banyak masalah yang bisa diselesaikan dengan bantuan graf. Jaringan persahabatan pada Friendster bisa direpresentasikan dengan graf: verteks-verteksnya adalah para pemakai Friendster dan ada edge antara A dan B jika dan hanya jika A berteman dengan B. Perkembangan algoritma untuk menangani graf akan berdampak besar bagi ilmu komputer.

Sebuah struktur graf bisa dikembangkan dengan memberi bobot pada tiap edge. Graf berbobot dapat digunakan untuk melambangkan banyak konsep berbeda. Sebagai contoh jika suatu graf melambangkan jaringan jalan maka bobotnya bisa berarti panjang jalan maupun batas kecepatan tertinggi pada jalan tertentu. Ekstensi lain pada graf adalah dengan membuat edgenya berarah, yang secara teknis disebut graf berarah atau digraf (directed graph). Digraf dengan edge berbobot disebut jaringan.

Jaringan banyak digunakan pada cabang praktis teori graf yaitu analisis jaringan. Perlu dicatat bahwa pada analisis jaringan, definisi kata "jaringan" bisa berbeda, dan sering berarti graf sederhana (tanpa bobot dan arah).
[sunting] Sedikit lebih formal

Suatu graph G dapat dinyatakan sebagai G = < V,E > . Graph G terdiri atas himpunan V yang berisikan verteks/node pada graph tersebut dan himpunan dari E yang berisi edge pada graph tersebut. Himpunan E dinyatakan sebagai pasangan dari verteks yang ada dalam V. Sebagai contoh definisi dari graf pada gambar diatas adalah : V = {1,2,3,4,5,6} dan E = {(1,2),(1,5),(2,3),(3,4),(4,5),(5,2),(4,6)}


Gambar dengan node yang sama dengan yang diatas, tapi merupakan digraf.

Pada digraf maka pasangan-pasangan ini merupakan pasangan terurut. Untuk menyatakan digraf (gambar kedua yang menggunakan tanda panah) kita dapat menggunakan himpunan edge sebagai berikut :

E = { < 1,2 > , < 1,5 > , < 2,5 > , < 3,2 > , < 4,3 > , < 5,4 > , < 4,6 > }

Dalam himpunan edge untuk digraf, urutan pasangan verteks menentukan arah dari edge tersebut.

Dalam teori graf, formalisasi ini untuk memudahkan ketika nanti harus membahas terminologi selanjutnya yang berhubungan dengan graph. Beberapa terminologi berhubungan dengan teori graf :

* Degree atau derajat dari suatu node, jumlah edge yang dimulai atau berakhir pada node tersebut. Node 5 berderajat 3. Node 1 berderajat 2.
* Path suatu jalur yang ada pada graph, misalnya antara 1 dan 6 ada path b \rightarrow c \rightarrow g
* Cycle siklus ? path yang kembali melalui titik asal 2 f \rightarrow c \rightarrow d \rightarrow e kembali ke 2.
* Tree merupakan salah satu jenis graf yang tidak mengandung cycle. Jika edge f dan a dalam digraf diatas dihilangkan, digraf tersebut menjadi sebuah tree. Jumlah edge dalam suatu tree adalah nV - 1. Dimana nV adalah jumlah vertex

Artikel ini adalah sebuah rintisan. Anda dapat membantu Wikipedia dengan mengembangkannya.

Love is...
© Memmorials Love Me (juna_mila) - Template by Blogger Sablonlari - Font by Fontspace